Disproportionation of SO₂ to S₈ and SO₃ on Cp*₂Cr₂S₅. Crystallographic and ³⁴S-Labeling Evidence for an Oxygen-Transfer Mechanism and Observation of Facile Exchange of Cr₂S₅ Core Sulfurs with ³⁴S. Structures of Cp*₂Cr₂(μ -S)(μ - η ²-S₂)(μ - η ¹-SS·SO₂)·SO₂ and Cp*₂Cr₂(μ -S)(μ - η ²-S₂)(μ -SSO₃)

Andreas Toupadakis, Gregory J. Kubas," and Carol J. Burns

Inorganic and Structural Chemistry Group (INC-1), MS-C346, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Received March 13, 1992

The syntheses, structures, and reactivities of $Cp^*_2Cr_2(\mu-S)(\mu-S_2)(\mu-S_2)(\mu-S_2)$, $1\cdot 2SO_2$, $1\cdot 2SO_2$, and $Cp^*_2Cr_2(\mu-S)(\mu-S_2)(\mu-S_2)$. S_2 (μ -SSO₃)·(CD₃OD)_{lattice}, 2, are reported. Reversible addition of SO₂ to Cp*₂Cr₂S₅, 1, to give 1.2SO₂ was found to occur at room temperature. 1 possesses a novel $\mu - \eta^1 - S_2$ ligand, and X-ray crystallography of 1-2SO₂ showed that SO₂ binds as a Lewis acid to the terminal sulfur of this ligand with an acute S-S-S angle (94°). The S-SO₂ distance of 2.41 Å is about 0.2 Å shorter than in the previously known $Cp^*_2Mo_2(\mu-S)(\mu-S_2)(\mu-S_2O_2)$. Consistent with this greater activation, $1-2SO_2$ further reacts in the presence of excess SO_2 to give the thiosulfate 2 (isomorphous to the Mo analogue) at a much faster rate than in the Mo system. Significantly, the crystal structure of $1.2SO_2$ shows the presence of associated SO_2 molecules unsymmetrically bridging (via sulfur) the oxygen atoms of each sulfidebound SO₂ molecule to give a cyclic aggregate of four SO₂ molecules (intermolecular S-O distances of 2.78 and 2.95 Å). Infrared studies demonstrate that these interactions further activate (weaken) the S=O bonds of the sulfide-bound SO_2 . Thus, it is proposed that the mechanism of SO_2 disproportionation in solution involves baseassisted oxygen atom transfer from the sulfide-bound SO₂ molecule to the associated SO₂ to produce SO₃. The SO₃ then displaces S_2O (which decomposes to S_8 and SO_2) from the bridging sulfide ligand to give the observed thiosulfate product. The reactivities of $1-2SO_2$ and $Cp^*_2Cr_2S_4$ ·SO₂ vs $Cp^*_2Mo_2S_4$ ·SO₂ and of 2 vs $Cp^*_2Mo_2S_4$ ·SO₃ are discussed. A mechanism for the oxygen atom transfer reaction is proposed on the basis of the crystal structure of $1-2SO_2$ and ³⁴S-labeling studies. Facile reaction of $Cp_2^2Cr_2S_4$ with S_8 was found to give 1, and all *five* of the core sulfurs in the latter incorporated ³⁴S if excess ³⁴S₈ was used. 1.2SO₂ and 2 crystallize in the space groups C2/c and $P\overline{1}$, respectively. The cell dimensions are the following: $1.2SO_2$, a = 16.087 (4) Å, b = 15.926 (3) Å, c = 21.650 (3) Å, $\beta = 105.29$ (2)°, and Z = 8; 2, a = 10.336 (2) Å, b = 10.891 (2) Å, c = 13.219 (3) Å, $\alpha = 85.15$ (3)°, $\beta = 10.219$ 78.85 (3)°, $\gamma = 62.39$ (3)°, and Z = 2. R = 4.85% for 1.2SO₂, and R = 4.84% for 2.

Introduction

Although transition-metal-mediated transfer of oxygen atoms to SO₂ from O₂ or other sources to generally give sulfate-containing species is quite common, only a few examples are known of O atom transfer between two or more SO₂ molecules on metal complexes.^{1,2} The simple disproportionation reaction³ $2SO_2 \rightarrow$ $SO_3 + SO$ is complicated by the instability of SO, which instantly disproportionates to S_8 and SO_2 , and the strong oxidizing ability of SO₃. Thus, potential catalysts for SO₂ breakdown must resist sulfur poisoning and oxidation. Stoichiometric disproportionation of SO₂ has recently been found in three diverse reaction systems: $Cp^*Ru(CO)_2H$,^{1b} Mo(N₂)₂(dppe)₂,^{1c} and $Cp^*_2Mo_2S_4$.² In all cases free SO₃ is not formed but is tied up by bases (μ -S to give the μ -SSO₃ ligand^{1b,2}) or inserts into the Ru-H bond.^{1b} Free sulfur² or sulfido ligands^{1b,c} are the coproducts. Such disproportionation processes may indeed be a hidden mechanistic feature of many SO₂ reactions, and reduction of $S^{IV}O_2$ may actually go through S^{VI}O₃-containing intermediates from SO₂ disproportionation. In this regard we have reported⁴ that catalytic conversion of SO₂ to exclusively S₈ and H₂O is achievable using $Cp^*_2Mo_2S_4$ as a sulfur-resistant catalyst and hydrogen as a reductant (eq 1, Figure 1). Reaction of SO₂ with solutions of

$$SO_2 + 2H_2 \rightarrow \frac{1}{8}S_8 + 2H_2O$$
 (1)

Cp*₂Mo₂S₄ initially yields the adduct Cp*₂Mo₂(μ -S)(μ -S₂)(μ -S₂O₂), which was shown by crystallography to contain an SO₂ molecule weakly bound to a μ -S ligand as the endo isomer (S-S = 2.60 Å).² This adduct further reacts with SO₂ (eq 2) to quantitatively give Cp*₂Mo₂(μ -S)(μ -S₂)(μ -SSO₃), which now contains an SO₃ fragment bound to the μ -S in exo fashion and can be regarded as a thiosulfate complex (S-S = 2.17 Å).

The SO₃ fragment is formed by an oxygen atom transfer process, and as established by ¹⁸O labeling, *the source of the oxygen is* SO_2 . Sulfur is also produced in eq 2, showing that SO₂ has

 ⁽a) Moody, D. C.; Ryan, R. R. J. Chem. Soc., Chem. Commun. 1980, 1230.
 (b) Kubat-Martin, K. A.; Kubas, G. J.; Ryan, R. R. Organometallics 1989, 8, 1910.
 (c) Lorenz, I.-P.; Walter, G.; Hiller, W. Chem. Ber. 1989, 123, 979.

⁽²⁾ Kubas, G. J.; Ryan, R. R.; Kubat-Martin, K. A. J. Am. Chem. Soc. 1989, 111, 7823.

⁽³⁾ The reaction of concern here is metal-mediated oxygen atom transfer and not the concept of self-ionization equilibrium, i.e., 2SO₂ = SO₃²⁻ + SO²⁺ (Jander, G. Die Chemie in Wasserahnlichen Losungsmitteln; Springer-Verlag: Berlin, 1949; pp 209-307). Also, related "oxide ion" transfers such as that reported in isotopic exchange reactions of liquid SO₂ and SO₃ (Huston, J. L. J. Am. Chem. Soc. 1951, 73, 3049) are unlikely to occur in the chemistry here.

⁽⁴⁾ Kubas, G. J.; Ryan, R. R. J. Am. Chem. Soc. 1985, 107, 6138.

Figure 1. Catalytic reduction of SO_2 to S_8 and H_2O , using the complex $Cp_2^*Mo_2(\mu-S_2)(\mu-S)_2$ as catalyst, and hydrogen as reductant.

effectively undergone net disproportionation to SO_3 and S_8 . The thiosulfate is readily hydrogenated at 25–75 °C to regenerate $Cp*_2Mo_2S_4$ with concomitant formation of H_2O and SO_2 (eq 3), completing the proposed catalytic cycle for eq 1 (Figure 1).

$$Cp_{2}^{*}Mo_{2}S_{4}SO_{3} + H_{2} \rightarrow SO_{2} + H_{2}O + Cp_{2}^{*}Mo_{2}S_{4} \qquad (3)$$

We report here that similar chromium sulfide complexes such as $Cp^{+}_2Cr_2S_5$, 1, originally prepared by Wachter^{5,6} are even *more active* than the molybdenum sulfides in cleaving SO₂. The $Cr/S/SO_2$ chemistry has led to the structural characterization of two complexes, the very revealing biactivated SO₂ adduct $Cp^{+}_2Cr_2(\mu-S)(\mu-S_2)(\mu-SS\cdotSO_2)\cdotSO_2$, 1·2SO₂, and the "SO₃ adduct" $Cp^{+}_2Cr_2S_4\cdotSO_3$, 2, which importantly now contains one less sulfur and is isostructural with the Mo species discussed above. The crystal structure of 1·2SO₂ as well as ³⁴S-labeling studies suggest a possible oxygen-transfer mechanism for the conversion of 1·2SO₂ to 2 in which *self-aggregation of SO₂ via weak Lewis acid-base interactions induced by electron donation from sulfide* plays a critical role.

Experimental Section

Reactions were carried out under inert atmosphere using Schlenk techniques. Reagent grade solvents and SO₂ were usually used as received, but for some reactions solvents were dried by distillation from appropriate drying agents. ³⁴S was obtained from the Mound Facility of Monsanto Research Corp., Miamisburg, OH. Samples of Cp⁺₂Cr₂S₄, Cp⁺₂Cr₂S₅, and Cp'₂W₂S₄ (Cp' = t-BuCp) were generously provided by Professor J. Wachter of the University of Regensburg, and the Cr species^{5,6} were also prepared by modification of literature methods. FT-IR and ¹H NMR spectra were recorded on Biorad FTS-40 and Brucker AM-200 instruments, respectively. Elemental analyses were performed by Galbraith Laboratories, Inc., Knoxville, TN. Mass spectroscopy (electron impact ionization) was carried out by Oneida Research Services, Inc., Whitesboro, NY.

Synthesis of 1.2SO₂. The green solid 1 (0.20 g) was dissolved in dry degassed toluene, and a green solution was obtained. When SO₂ was passed through the solution, the color changed at once to brown-yellow. Heptane, which was degassed with SO₂, was added to the brown-yellow solution, and the product precipitated as a microcrystalline solid in a quantitative yield. The complex was collected on a frit, washed with SO₂-saturated heptane, and dried in a stream of SO₂ gas. The SO₂ interacting with the sulfide-coordinated SO₂ of 1.2SO₂ is readily lost if exposed to air or if an SO₂-enriched atmosphere is not maintained over the complex. The sulfide-bound SO₂ is more tightly held but readily dissociates in solution under vacuum.

Synthesis of $Cp^*_2Cr_2S_4$:SO₃, 2. Method A. From Pure 1. 1 (0.12 g) was dissolved in dry degassed PhCl (3 mL), and the characteristic olive green solution was obtained. When SO₂ was passed through the solution, the color changed at once to brown-yellow. Next methanol (1 mL,

degassed with SO₂) was added, and the solution turned to bright green in about 15 min. The green solution was stirred for an additional 30 min, and then full vacuum was applied for 10 min. When a solid started to form, heptane was added and the product precipitated as a green microcrystalline solid in quantitative yield. It was filtered, washed with heptane, and dried under vacuum. The complex is stable in air in the solid or solution states. Anal. Calcd for C₂₀H₃₀O₃Cr₂S₅: C, 41.22; H, 5.19; S, 27.51. Found: C, 41.00; H, 4.91; S, 27.34.

The above reaction can also be carried in toluene containing $\sim 1\%$ Et₃N (10 min) or liquid SO₂ (30 min).

Method B. From Crude 1. The procedure 5b for the preparation of 1 was followed, using $\sim 2 g$ of $[Cp^*Cr(CO)_2]_2$ starting material. Instead of chromatographic separation, the toluene solution of crude product obtained was reduced in volume by $\sim 50\%$ in vacuo, filtered, and treated with excess SO_2 for 30 min to form primarily the adduct $1.2SO_2$. Addition of heptane and storage in a refrigerator overnight precipitated selectively only the crystalline SO_2 adduct and a small amount of bright green 2. This was then dissolved in a minimum amount of toluene, an equal volume of MeOH was added, and the solution was stirred under SO_2 for 30 min. The bright green solution, which was found to contain exclusively 2 by NMR, was reduced in volume, treated with heptane after precipitation first began, and allowed to stand to complete precipitation. The resulting green solid was collected, washed with CS₂ to remove any residual elemental sulfur, and dried in vacuo; NMR confirmed it to be pure 2, in yield approximately equivalent to that reported for the synthesis^{5b} of 1 (14-17%).

Reactions of Cp^{*}₂Cr₂S₄ with Sulfur To Form Cp^{*}₂Cr₂S₅, 1. Preparation of ³⁴S-Labeled 1. A green-blue solution of Cp^{*}₂Cr₂S₄ in CDCl₃ in an NMR tube showed a strong Cp^{*} ¹H resonance at 1.96 ppm plus a minor signal at 1.91 ppm possibly due to an isomeric form or impurity. Upon addition of excess S₈, the solution immediately turned green-yellow and NMR showed that a new sharp singlet appeared at 2.14 ppm due to 1. Only a very weak peak remained at 1.96 ppm. Similar results were obtained in toluene-d₈ solution, wherein the respective NMR signals shifted from 1.83 (major) and 1.78 ppm (minor) to 1.98 ppm characteristic of the S₅ species.

In order to attempt to prepare Cp*₂Cr₂S₄³⁴S specifically labeled at the terminal sulfur of the η^1 -S₂ ligand, Cp*₂Cr₂S₄ (15 mg, 0.030 mmol) in 10 mL of CHCl₃ was reacted with 4 mg of ³⁴S₈ (0.015 mmol, 4-fold excess). After 10 min, the solution was filtered to remove unreacted sulfur, and solvent was slowly removed from the filtrate in vacuo over about a 3-h period. NMR of the solid residue showed that the expected 1 had formed ($\delta_{Cp^*} = 2.13$ ppm) plus a trace of 2 (probably a carry-over impurity of Cp*₂Cr₂S₄). Mass spectroscopic studies showed that complete isotopic scrambling of the core sulfurs occurred. Although only very weak parent ion peaks of 1 were observed by either chemical ionization or electron impact, the fragments from loss of one or more sulfurs were readily seen to give masses due to complete isotopomeric sets (see Results and Discussion). Electron impact methods were found to give generally better spectra.

Preparation of ³⁴S-Labeled 1·2SO₂ and Its Oxygen-Transfer Reaction with SO₂. Cp*₂Cr₂S₄ (20 mg, 0.040 mmol) and ³⁴S₈ (6 mg, 0.022 mmol) were stirred in 3 mL of toluene containing ca. 1 mL of CHCl₃ (to aid solubility). After several hours of equilibration, during which some solids (mostly sulfur) remained undissolved, the green solution was filtered and treated with SO₂. SO₂-saturated heptane was added to the now brown solution, which was placed in a refrigerator overnight for crystallization. The mixture was decanted, and the brown crystalline SO₂ adduct was washed three times with CS₂ containing SO₂ to remove any traces of sulfur (which would interfere with mass spectroscopic analysis of the products of subsequent reaction with SO₂).

A sample of the above adduct was dissolved in a minimum amount of CHCl₃ under SO₂ and MeOH added. The characteristic bright green color of 2 was obtained, and all volatiles were removed in an SO₂ stream. The residue was then used for mass spectroscopic and IR analysis of the isotopic compositions of the 2 and S₈ products.

X-ray Crystallography of 1-2SO₂. A dark brown-red prismatic crystal of $1-2SO_2$ was fixed in Apiezon grease on a glass fiber and transferred directly to the cold stream (-70 °C) of a Siemens diffractometer. The data collection and results are summarized in Table I. The structure was partially solved from direct methods and then solved and refined using Fourier difference maps. Tables of further details of the crystallography, atomic coordinates, and anisotropic thermal parameters are given as supplementary material.

X-ray Crystallography of Cp*₂Cr₂S₄:SO₃·(CD₃OD)_{lattice}. A large crystal was cleaved in half to give a dark-green pyramidal crystal, which

 ^{(5) (}a) Brunner, H.; Wachter, J.; Guggolz, E.; Ziegler, M. L. J. Am. Chem. Soc. 1982, 104, 1765. (b) Wachter, J.; Brunner, H.; Meier, W. Inorg. Synth. 1990, 27, 69.

 ^{(6) (}a) Brunner, H.; Kauermann, H.; Meier, W.; Wachter, J. J. Organomet. Chem. 1984, 263, 183.
 (b) Brunner, H.; Pfauntsch, J.; Wachter, J.; Nuber, B.; Ziegler, M. L. J. Organomet. Chem. 1989, 359, 179.

Table I. Crystallographic Data for 1.2SO₂ and 2-CD₃OD

	1.2SO2	2.CD ₃ OD
chem formula	C ₂₀ H ₃₀ Cr ₂ O ₄ S ₇	$C_{21}H_{34}Cr_2O_4S_5$
a, Å	16.087 (4)	10.336 (2)
b. Å	15.926 (3)	10.891 (2)
c, Å	21.650 (3)	13.219 (3)
α , deg	• •	85.15 (3)
β , deg	105.29 (2)	78.85 (3)
γ , deg	- /	62.39 (3)
$V, Å^3$	5350 (2)	1293.7 (5)
Z	8	2
fw	662.9	614.8
space group	C_2/c	РĪ
<i>T</i> , ⁰C .	-7Ó	25
λ, Å	0.710 73	0.710 73
$\rho_{calcd}, g \cdot cm^{-3}$	1.646	1.578
μ , cm ⁻¹	13.45	12.34
Ra	0.048	0.048
R., ^b	0.049 ^c	0.085 ^d

 $\label{eq:rescaled_states} \begin{array}{l} {}^{a}R = \sum (|F_{\rm o}| - |F_{\rm c}|) / \sum |F_{\rm o}|, \ b \ R_{\rm w} = [\sum w (|F_{\rm o}| - |F_{\rm c}|)^2 / \sum w |F_{\rm o}|^{1/2}. \ ^{c}w = [\sigma^2(F_{\rm o}) + 0.0016F_{\rm o}^2]^{-1}. \end{array}$

was encased in epoxy cement and transferred to an Enraf-Nonius diffractometer at room temperature. The data collection and results are summarized in Table I. The hydrogen positions were calculated and fit by a riding model. Tables of further details of the crystallography, atomic coordinates, and anisotropic thermal parameters are given as supplementary material.

Results and Discussion

SO₂ Binding to Sulfide Ligands of Cp*₂Cr₂S₅ and Cp*₂Cr₂S₄. The novel complex characterized by Wachter, Cp*2Cr2S5, 1, contains both an η^2 -S₂ and a rare η^1 -S₂ ligand bridging the metal centers.⁵ It was found that reversible addition of SO₂ to this

complex occurs at room temperature. A green solution of 1 in toluene changes immediately to a brown-yellow color upon the addition of SO_2 gas, and when vacuum is applied, the green color is obtained again. Addition of SO₂-saturated heptane to the brown-yellow toluene solution quantitatively produces the new complex $1.2SO_2$ as a dark solid. The IR of crystals of the latter obtained by slow cooling shows bands for two kinds of SO₂ molecules, with one set of frequencies at 1197 and 1056 cm⁻¹ and the other at 1318 and 1144 cm⁻¹. Compared to band positions for coordinated⁷ SO₂ and free SO₂ (1361 and 1151 cm⁻¹ in the gas phase⁸), the lower-energy set is consistent with SO_2 bound to a metal or ligand as a Lewis acid.

The bands at much higher frequency are most probably due to weakly associated SO_2 (coordination to the metal as a Lewis base, which could also give high v_{SO} , is unlikely here because of the reversibility of the binding and electronic considerations⁷). Obviously, both types of SO_2 are activated, with the coordinated one more activated than the associated molecule because the lowering of v_{SO} can be qualitatively correlated with the strength of the Lewis base B to which SO_2 is bound. When the Nujol mull sample is left to stand, SO₂ slowly escapes, and the bands due to associated SO_2 diminish. Eventually only the bands of the

Table II. Nujol Mull IR and ¹H NMR (Cp*) Data for Cr and Mo Sulfide Complexes

complex	$\nu_{SO}, \delta_{SO}, cm^{-1}$	δ _{MeOH-d4}	δ _{CDCl3}	δ _{toluene-ds}
Cp*2Cr2S5			2.14ª	1.98
Cp*2Cr2S5·SO2	1197, 1056, 523		2.14	
(SO ₂)	1318, 1144, 527			
Cp* ₂ Cr ₂ S ₄		1.95, ^b 1.88 ^c	1.96, , 1.91	1.83, \$ 1.78
Cp*2Cr2S4·SO2			2.15	1.88, \$ 1.86
Cp* ₂ Cr ₂ S ₄ ·SO ₃	1228, 1204, 1012, 610d	2.23	2.24 ^d	1.93
Cp*₂Mo₂S₄			2.14	
Cp*2Mo2S4·SO2	1229, 1080, 533*		2.13*	
Cp*2Mo2S4SO3	1242, 1205, 1010,		2.31*	

^a Lit.⁵ $\delta_{CDCl_3} = 2.13$ ppm. ^b Major peak (lit.^{6a} $\delta_{CDCl_3} = 1.98$ ppm). ^c Minor peak. ^d Lit^{6b} $\nu_{SO} = 1229$, 1207, 1010, 600; $\delta_{CDCl_3} = 2.24$ ppm. e Reference 2.

Figure 2. ORTEP drawing (50% ellipsoids) of the structure of 1.2SO2, shown without associated SO₂ molecules.

coordinated SO₂ remain but are shifted to higher energy, i.e., 1209 and 1063 cm⁻¹. This demonstrates that there is an interaction between the two kinds of SO_2 molecules, which is in accord with the X-ray crystallographic results obtained on this complex given below.

The S_4 complex $Cp^*_2Cr_2S_4$, which can be prepared by abstraction of the terminal sulfur from 1 by PPh₃, has a $(\mu - \eta^2 S_2$)(μ -S)₂ structure similar to the Mo analogue.⁶ Addition of SO_2 to $CDCl_3$ or toluene-d₈ solutions of this complex in NMR tubes showed color changes from deep green-blue to olive green and relatively large shifts (0.05-0.19 ppm) in the Cp* NMR signals compared to the Mo analogue or 1 (Table II).

The tungsten analogue $Cp_2^*W_2(\mu - S_2)(\mu - S)_2$ is unknown, and its reactivity toward SO₂ could not be compared to those of the Cr and Mo complexes. However, no reaction of SO₂ with the isomeric species containing terminal sulfides, $Cp'_2W_2(S)_2(\mu$ -S)₂ (Cp' = t-BuCp), was observed, as also had been the case for the Cp*Mo analogue.²

Clearly not every sulfide complex will bind or activate SO₂, and the rationale for this awaits more comprehensive studies.

X-ray Structure of 1.2SO2. Crystals of 1.2SO2 were grown from concentrated toluene solutions, carefully layered with SO₂saturated heptane overnight at 10 °C, and the structure of 1.2SO2 was determined from diffraction data collected at -70 °C. The molecular structure (Figure 2) shows SO₂ binding to the novel μ - η^1 -S₂ ligand (S-SO₂ = 2.41 Å) with an acute 94° S-S-S angle (bond distances and angles are given in Table III). Most interestingly, the structure also shows that the oxygen atoms of each coordinated SO₂ molecule interact with the sulfur atoms of two associated SO₂ molecules to form an eight-membered ring (Figure 3). The ring is nearly planar, with a mean deviation from the least-squares plane of 0.147 Å (Figure 4). The S-O distances are unequal (2.776 and 2.954 Å), both of which are

⁽⁷⁾ Kubas, G. J. Inorg. Chem. 1979, 18, 182.
(8) Grigg, E. C. M.; Johnston, G. R. Aust. J. Chem. 1966, 19, 1147.

Table III. Bond Lengths (Å) and Angles (deg) for 1.2SO₂

Bond Lengths						
Cr(1)-Cr(2)	2.497 (6)	Cr(1) - S(1)	2.227 (10)			
Cr(1) - S(2)	2.319 (9)	Cr(1) - S(3)	2.332 (9)			
Cr(1) - S(4)	2.358 (9)	Cr(1) - C(1)	2.235 (30)			
Cr(1) - C(2)	2.234 (30)	Cr(1) - C(3)	2.220 (28)			
Cr(1) - C(4)	2.211 (26)	Cr(1) - C(5)	2.218 (31)			
Cr(2)-S(1)	2.224 (10)	Cr(2) - S(2)	2.326 (8)			
Cr(2)-S(3)	2.341 (9)	Cr(2) - S(4)	2.339 (10)			
Cr(2)-C(11)	2.239 (28)	Cr(2) - C(12)	2.221 (27)			
Cr(2) - C(13)	2.214 (30)	Cr(2) - C(14)	2.222 (30)			
Cr(2) - C(15)	2.234 (30)	S(2)–S(3)	2.027 (13)			
S(4)–S(5)	2.085 (14)	S(5)–S(6)	2.414 (13)			
S(6)-O(1)	1.449 (32)	S(6)-O(2)	1.456 (26)			
S(7)–O(3)	1.400 (33)	S(7)–O(4)	1.409 (34)			
Bond Angles						
Cr(2)-Cr(1)-S(1)	55.8 (3)	Cr(2)-Cr(1)-S(2)	57.6 (2)			
S(1)-Cr(1)-S(2)	83.9 (3)	Cr(2)-Cr(1)-S(3)	57.9 (2)			
S(1)-Cr(1)-S(3)	112.8 (3)	S(2) - Cr(1) - S(3)	51.7 (3)			
Cr(2)-Cr(1)-S(4)	57.5 (2)	S(1)-Cr(1)-S(4)	75.4 (3)			
S(2)-Cr(1)-S(4)	112.4 (3)	S(3) - Cr(1) - S(4)	79.1 (3)			
		Cr(1)-Cr(2)-S(1)	55.9 (3)			
Cr(1)-Cr(2)-S(2)	57.4 (2)	S(1)-Cr(2)-S(2)	83.8 (3)			
Cr(1)-Cr(2)-S(3)	57.5 (2)	S(1)-Cr(2)-S(3)	112.5 (3)			
S(2)-Cr(2)-S(3)	51.5 (3)	Cr(1)-Cr(2)-S(4)	58.3 (7)			
S(1)-Cr(2)-S(4)	75.9 (3)	S(2)-Cr(2)-S(4)	112.8 (3)			
S(3)-Cr(2)-S(4)	79.3 (3)					
Cr(1)-S(1)-Cr(2)	68.3 (3)	Cr(1)-S(2)-Cr(2)	65.0 (3)			
Cr(1)-S(2)-S(3)	64.5 (4)	Cr(2) - S(2) - S(3)	64.7 (3)			
Cr(1)-S(3)-Cr(2)	64.6 (3)	Cr(1) - S(3) - S(2)	63.8 (4)			
Cr(2)-S(3)-S(2)	63.9 (3)	Cr(1)-S(4)-Cr(2)	64.2 (3)			
Cr(1) - S(4) - S(5)	111.9 (4)	Cr(2)-S(4)-S(5)	109.0 (4)			
S(4) - S(5) - S(6)	97.2 (5)	S(5)-S(6)-O(1)	99.6 (11)			
S(5)-S(6)-O(2)	102.4 (11)	O(1)-S(6)-O(2)	113.9 (18)			
O(3) - S(7) - O(4)	116.5 (20)					

Figure 3. Complete structure of $1-2SO_2$, showing cyclic aggregation of SO_2 .

significantly less than the shortest intermolecular S–O distance in solid SO₂, 3.10 Å,⁹ and also the van der Waals distance, 3.25 Å. The S–O distance in a related weak Lewis acid–base complex, H₂O···SO₂, is 2.82 Å (microwave spectroscopy).¹⁰ Ru(CO)₂(η^2 -SO₂·SO₂)(PPh₃)₂, which contains SO₂ bound to the terminal oxygen of a side-bonded SO₂, has O–SO₂ = 2.51 Å.^{1a}

The average value of 1.45 Å for the S-O bonds of the coordinated SO₂ molecule in 1.2SO₂ is somewhat longer than that in free SO₂ (1.43 Å) and that in Cp^{*}₂Mo₂(μ -S₂)(μ -S)(μ -S)(μ -S)(2)(1.40 Å). However, S-O distances in SO₂ have generally not been a practical measure of bond activation because of inherently large standard deviations.

The μ -SS-SO₂ bond is 2.41 Å, considerably shorter than the 2.60 Å in Cp^{*}₂Mo₂(μ -S₂)(μ -S)(μ -S·SO₂) which contains SO₂

Figure 4. Two views of the ring structure in $1-2SO_2$ with distance and angle data. Deviations from plane: S(7a), -0.224; S(6a), -0.015; O(1a), +0.186; O(2a), -0.163 Å (signs reversed for b atoms).

bound to a bridging sulfide rather than disulfide.² This, along with lower SO₂ lability, does clearly indicate a larger degree of electron flow to the SO₂ molecule from the Cr/S system compared to the Mo/S dimer. However, these S-S distances are considerably longer than a "normal" single bond distance (2.04–2.07 Å), and the SSO₂ and SSSO₂ units should not be thought of as thiosulfito ligands such as that in (CN)₅CoSSO₂Co(CN)₅⁶⁻ (S-S = 2.064 Å¹¹). Comparing the CrS₅ core distances in 1-2SO₂ with those in 1 shows little change, except for S-S in the η^2 -S₂ group, which decreases by 0.12 Å on SO₂ binding.

Oxygen-Transfer Reactions of Sulfide-SO₂ Adducts with SO₂ To Form $Cp^*_2Cr_2S_4$ ·SO₃, 2. The SO₂ adduct of 1 further reacts in solution in the presence of SO₂ to quantitatively give an airstable green SO_3 adduct 2, which can also be viewed as a μ -thiosulfate complex.

This reaction is notable in that both oxygen transfer and extrusion of a "core" sulfur occurs, making this conversion distinct from that in the Mo/S system. Both 2 and also $Cp_2Cr_2(\mu-S_2)(\mu-S_2)$ S)(μ -SS·SO₃), the other possible product of eq 4, have previously been prepared by Wachter by reaction of $Cp_2^*Cr_2S_x$ (x = 4, 5) with py-SO₃.^{6b} Chemical analysis and X-ray crystallography confirmed that the complex we obtained from eq 4 was indeed 2. The mechanistic question of whether one oxygen is added to SO_2 to form the SO_3 or whether three oxygens are transferred to the terminal sulfur of the η^2 -S₂ will be addressed later. SO vibrations were observed in the Nujol mull IR spectrum of 2 at 1228, 1204, 1012, and 610 cm⁻¹, similar to those reported by Wachter.^{6b} Mass spectroscopy of 2 (chemical ionization or electron impact) did not show a parent ion peak, but a cluster of peaks centered at mass 502 corresponding to the fragment $Cp_{2}^{*}Cr_{2}S_{4}$ was seen. An electron impact spectrum of the product mixture of eq 4 was used to confirm that S_8 was formed (a mass 256 peak was present that was not seen in the spectrum of isolated 2).

The reaction in eq 4 occurs at a much faster rate than the thiosulfate formation in the Mo/S system (eq 2). Under identical

⁽⁹⁾ Post, B.; Schwartz, R. S.; Fankuchen, I. Acta Crystallogr. 1952, 5, 372.
(10) Matsumura, K.; Lovas, F. J.; Suenram, R. D. J. Chem. Phys. 1989, 91, 5887.

⁽¹¹⁾ Fronczek, F. R.; Marsh, R. E.; Schaefer, W. P. J. Am. Chem. Soc. 1982, 104, 3382.

Figure 5. ORTEP drawing (50% ellipsoids) of the structure of $Cp^{*}_{2^{-}}Cr_{2}S_{5}\cdot SO_{3}\cdot CD_{3}OD_{lattice}.$

conditions (toluene, $1\% \text{ Et}_3 N$, $25 \,^{\circ} \text{C}$), the above conversion takes place in 10 min, but negligible conversion of Cp^{*}₂Mo₂S₄·SO₂ to Cp^{*}₂Mo₂S₄·SO₃ takes place even after months. Higher solvent polarity combined with the presence of Lewis base promoters such as Et₃N increases reaction rates in both systems by orders of magnitude. Even for the Cr/S system conversion to the thiosulfate did not occur after several hours in either toluene or chlorobenzene until a small amount of amine (~1%) or methanol cosolvent (~1:1) was added. The brown-red PhCl solution of 1·2SO₂ converted to green 2 in 10 min in the presence of MeOH at room temperature and nearly instantaneously if Et₃N was added.

 $Cp_{2}^{*}Cr_{2}S_{4}$ was also shown to transform to 2 rapidly in SO₂saturated organic solvents, indicating that the extra sulfur in 1 was not a major factor in comparisons to the Mo system. The reaction rates were much higher for the CrS₄ complex than those of the directly analogous MoS₄ complex. In CDCl₃, an NMR tube reaction showed 50% conversion to 2 within 1 h, whereas for the Mo congener <5% reaction occurred even after 1 week. Addition of a weak base and/or more polar solvent such as MeOH to the CDCl₃ solutions speeded up the conversions markedly: completion within 15 min for the Cr system and 3 h for Mo. The higher reaction rates for the chromium sulfides clearly demonstrate that the nature of the metal is still important in this chemistry, even though the conversions appear to occur only on the sulfide ligands without direct involvement of the metal. The reaction rates are higher for the complexes with lower v_{SO} IR frequency and longer observed S-O bond length, i.e., more activated S=O: $Cp_2^{*}Cr_2S_5 \cdot SO_2$ ($\nu_{SO} = 1210, 1060 \text{ cm}^{-1}; \text{ S}-O$ = 1.45 Å) > Cp*₂Mo₂S₄·SO₂ (ν_{SO} = 1230, 1080 cm⁻¹; S—O = 1.40 Å) > Cp*₂Mo₂(μ -S)₂(μ -S₂C₂H₂)·SO₂ (ν _{SO} = 1240, 1090 cm⁻¹; no reaction, possibly because of less flexible sulfide core²).

Crystal Structure of 2-CD₃OD. Crystals of 2 as dark green pyramids containing a lattice solvent molecule were grown from a concentrated MeOH- d_4 NMR sample solution by allowing it to stand at room temperature for several days, and the structure was determined at 25 °C. The molecular geometry (Figure 5) is nearly identical to that of the Mo analogue Cp^{*}₂Mo₂S₄·SO₃.² Bond distances and angles are given in Table IV. The structures of Cp^{*}₂M₂S₄·SO₃ showed that the S=O and S-SO₃ bond lengths are quite similar, i.e., 1.43 and 2.15 Å for M = Cr and 1.44 and 2.17 Å for M = Mo.

The orientation of the various groups (S, SO_2, SO_3) attached to the μ -S in these M_2S_4 core units is worthy of comment. In all cases only one isomer is present, the exo form (group pointed toward the η^2 -S₂), except for *endo*-Cp*₂Mo₂S₄·SO₂. This stereoselectivity may be significant in mechanistic pathways (see below).

Improved Synthetic Routes to Chromium Sulfide Complexes. Preparation of 1 by Reaction of $Cp_2Cr_2S_4$ with S_8 . Reaction of $Cp_2Cr_2S_4$ with S_8 in chloroform or toluene solution was found to quantitatively (by NMR) produce 1 within 5 min. This reaction

Table IV. Bond Lengths (Å) and Angles (deg) for 2

Bond Lengths					
$\begin{array}{c} Cr(2)-Cr(1) \\ Cr(2)-S(1) \\ Cr(2)-S(2) \\ Cr(2)-C(12) \\ Cr(2)-C(14) \\ Cr(1)-S(3) \\ Cr(1)-S(3) \\ Cr(1)-S(4) \\ Cr(1)-C(1) \\ Cr(1)-C(3) \\ Cr(1)-C(5) \\ S(4)-S(5) \\ Cr(2)-C(5) \\ Cr(2)-C(5)$	2.505 (1) 2.227 (1) 2.320 (1) 2.219 (6) 2.246 (4) 2.334 (1) 2.374 (1) 2.236 (5) 2.218 (4) 2.226 (6) 2.152 (2)	$\begin{array}{c} Cr(2)-S(3)\\ Cr(2)-S(4)\\ Cr(2)-C(11)\\ Cr(2)-C(13)\\ Cr(2)-C(15)\\ Cr(1)-S(1)\\ Cr(1)-S(1)\\ Cr(1)-S(2)\\ Cr(1)-C(2)\\ Cr(1)-C(4)\\ S(3)-S(2)\\ S(5)-O(1)\\ Cr(1)-C(4)\\ S(3)-S(2)\\ Cr(1)-C(4)\\ Cr($	2.336 (1) 2.361 (2) 2.219 (5) 2.237 (5) 2.230 (4) 2.230 (1) 2.309 (2) 2.234 (3) 2.234 (3) 2.218 (6) 2.033 (2) 1.436 (4)		
S(3) = O(2)	1.445 (0) D 1.4	S(3) = O(3)	1.443 (3)		
	Bond A	ingles			
Cr(1)-Cr(2)-S(3)	57.5 (1)	Cr(1)-Cr(2)-S(1)	55.9 (1)		
S(3) = Cr(2) = S(1) S(3) = Cr(2) = S(4)	112.3(1)	Cr(1) = Cr(2) = S(4) S(1) = Cr(2) = S(4)	58.3(1)		
$C_{r}(1) = C_{r}(2) = S(2)$	57.0(1)	S(1) = C1(2) = S(4) S(3) = Cr(2) = S(2)	518(1)		
S(1) = Cr(2) = S(2)	83 2 (1)	S(4) = Cr(2) = S(2)	1132(1)		
C(14) = Cr(2) = C(15)	371(1)	$C_{r}(2) = C_{r}(1) = S(3)$	57.6 (1)		
$C_{r}(2) = C_{r}(1) = S(1)$	57.1(1)	S(3) = Cr(1) = S(3)	1124(1)		
Cr(2) = Cr(1) = S(4)	57.8 (1)	S(3) = Cr(1) = S(4)	80.5 (1)		
S(1) - Cr(1) - S(4)	74.1 (1)	Cr(2) - Cr(1) - S(2)	57.4 (1)		
S(3) - Cr(1) - S(2)	51.9(1)	S(1)-Cr(1)-S(2)	83.4 (7)		
S(4) - Cr(1) - S(2)	113.1 (1)	Cr(2)-Cr(1)-C(1)	144.4 (1)		
Cr(2)-S(3)-Cr(1)	64.9 (1)	Cr(2) - S(3) - S(2)	63.7 (1)		
Cr(1) - S(3) - S(2)	63.4 (1)	Cr(2) - S(1) - Cr(1)	68.4 (1)		
Cr(2) - S(4) - Cr(1)	63.9 (1)	Cr(2) - S(4) - S(5)	115.4 (1)		
Cr(1) - S(4) - S(5)	116.5 (1)	Cr(2) - S(2) - Cr(1)	65.5 (1)		
Cr(2) - S(2) - S(3)	64.5 (1)	Cr(1) - S(2) - S(3)	64.7 (1)		
S(4) - S(5) - O(1)	108.0 (2)	S(4) - S(5) - O(2)	102.6 (2)		
O(1) - S(5) - O(2)	113.3 (3)	S(4) - S(5) - O(3)	103.1 (2)		
O(1)-S(5)-O(3)	114.5 (3)	O(2) - S(5) - O(3)	113.9 (3)		

has not previously been reported and proved to be a convenient method of incorporating ³⁴S into the Cr/S core for mechansitic studies (see below). Also, a new, attractive method of producing 2 and, potentially, $Cp^*_2Cr_2S_x$ (x = 4, 5) in pure form without having to use column chromatography was found. The published procedure⁵ for the preparation of 1 is followed, but the crude reaction product mixture is reacted with SO₂ to precipitate 1·2SO₂ (containing a small amount of 2 and perhaps $Cp^*_2Cr_2S_4 \cdot SO_2$). Unreacted starting material $[Cp^*Cr(CO)_2]_2$ present in the reaction mixture does not react with SO₂ as shown in a separate experiment. The SO₂ adduct can then readily be converted to pure 2 by further reaction with SO₂.

This procedure can also be applied to synthesizing pure $Cp^*_2Cr_2S_4$ or 1. In order to avoid formation of 2, the SO_2 adduct(s) formed must be precipitated *immediately*. They are then dissolved in toluene, and full vacuum is quickly applied while stirring in order to remove all SO_2 . A mixture of the S_5 and S_4 (minor) complexes is formed, and reaction with Ph₃P, which removes sulfur from 1,⁶ can then be used to produce exclusively $Cp^*_2Cr_2S_4$. Reaction of the mixture with S_8 would produce pure 1 on the other hand. The following scheme summarizes the transformations:

Proposed Mechanism of the Oxygen-Transfer Reaction. How does oxygen atom transfer take place in solution to produce the

Figure 6. Possible mechanism for the disproportionation of SO₂ to sulfur and SO₃ based on the structure of 1.2SO₂, where B is a Lewis base such as MeOH or Et₃N. S* indicates the position of ³⁴S in the labeling experiment (metal-bound sulfurs also contained 34S; n²-S₂ group not shown for clarity).

SO₃ group from SO₂? A possible scenario could involve oxygen atom transfer from sulfide-coordinated SO₂ to weakly-associated SO₂ molecules analogous to those in the crystal structure of 1.2SO₂. Figure 6 illustrates a mechanism for half the "tetrameric" unit of Figure 3 that would more realistically be present in solution (the position and ultimate fate of the terminal sulfur of the η^1 -S₂ is marked with an asterisk, which also refers to ³⁴S labeling below). Lewis bases [B], such as amines, must also play a role because they have been shown to accelerate both the SO₂ disproportionation and catalytic hydrogenation (eqs 1 and 2) and proven to function in Lewis rather than Bronsted fashion.² For example, they could trigger the oxygen transfer (which does not occur in the solid state) by stabilizing nascent Lewis acid fragments such as SO_3 and S_2O . This could lower the activation barrier and make the thermodynamics more favorable (SO₂ disproportionation to SO₃ and S₈ is endothermic by 38 kcal/mol,¹² but energy could be regained by B-SO3 interactions and ultimately formation of S-SO₃). A BSO₃ group could displace the presumably weaklyheld S₂O fragment remaining attached to the μ -S (it is best to view this fragment as μ -S···S*SO rather than μ -SS*···SO in light of the ultimate elimination of S^* as S_8 as proven below). The process could be stepwise or concerted and possibly involve immediate attack at the more sterically-accessible adjacent μ -S, leading to formation of the exo isomer observed for both chromium and molybdenum thiosulfates. A concerted displacement would rationalize why the known^{6b} complex $Cp^*_2Cr_2(\mu-S)(\mu-S_2)(\mu-S_2)(\mu-S_2)$ SS-SO₃) is not observed as a product. The latter would likely result if any SO₃ or B-SO₃ was set free and then attacked unreacted 1.2SO₂.

Regarding the displaced S₂O, lower oxides of sulfur are known to be unstable and to rapidly disproportionate to SO_2 plus elemental sulfur,¹³ the other final product of the oxygen transfer. S_2O has been reported¹⁴ to form a 1:1 adduct with Me₃N at -30 °C, decomposing within seconds at 20 °C to S₈, SO₂, and amine. It is possible that a base helps to extract the S_2O group from the μ -S, though this may not be necessary.

Sulfate was not formed from $1.2SO_2$, although the cyclic SO_2 aggregate appears set up for it. Sulfate has been found to be produced by oxygen transfer involving metal-bound SO₂, notably in $Ru(CO)_2(\eta^2-SO_2\cdot SO_2)(PPh_3)_2$, which as in 1.2SO₂ contains

(14) Schenk, P. W.; Steudel, R. Z. Anorg. Allg. Chem. 1966, 342, 263.

 SO_2 weakly interacting with the terminal oxygen of a bound SO_2 . In O₂-free solutions containing SO₂, $Ru(CO)_2(SO_4)(PPh_3)_2$ and Ph₃PS spontaneously formed.^{1a} It is interesting that PPh₃, derived either sacrificially or from added PPh3, acts as a sulfur scavenger and perhaps aids oxygen transfer.

³⁴S Isotopic Labeling Studies of the Oxygen-Transfer Reaction and Sulfide Ligand Scrambling. In order to support the mechanism proposed in Figure 6, ³⁴S-labeling studies were carried out to determine if reaction of $Cp_2Cr_2(\mu-S)(\mu-\eta^2-S_2)(\mu-\eta^1-S^{34}S)$ with SO₂ produces nonlabeled 2 and ³⁴S-labeled S₈. The labeled complex was prepared by the facile reaction of $Cp_2Cr_2S_4$ with ³⁴S₈ in CHCl₃ or toluene. A 4-fold excess of sulfur was used; slow solvent removal (\sim 3 h total reaction time) gave a solid residue containing 1 and unreacted sulfur (total coordinated and free ${}^{34}S/{}^{32}S = 1$). Mass spectroscopy was used to monitor the position of the label. Surprisingly, the chemical ionization mass spectrum of the solid showed that ³⁴S was incorporated into all five of the sulfur sites; i.e., the core sulfurs about the metal completely exchange with each other. Two sets of fragmentation patterns were seen: one attributable to fragments of the complex with higher mass than expected for $Cp_2^*Cr_2S_4^{34}S$ and those attributable to scrambled sulfur (isotopomers of S_8). Although the parent ion peak of the complex is very weak, the envelope centered at mass 507 corresponded to all isotopomers of the $Cp_{2}Cr_{2}S_{4}$ fragment (parent minus S) consistent on the average with roughly equal amounts of ³⁴S and ³²S. The analogous spectrum of unlabeled 1 showed the envelope centered at mass 503 by comparison. Thus, it would be appropriate to write the product of the above reaction as a mixture of molecules with the formula $Cp_{2}^{*}Cr_{2}^{x}S_{5}$ (x = 160, 162, 164, 166, 168, and 170). As far as we know there have been no previous demonstrations of complete sulfur interchange in polysulfido complexes. As a further check, isolated 1 and ³⁴S₈ were found to totally exchange sulfurs in CHCl₃ overnight, but as expected, 2 did not incorporate ${}^{34}S_8$.

The mixture of scrambled S_8 and $Cp^*_2Cr_2^XS_5$ as obtained above was reacted with SO₂, and the resulting adduct (³⁴S-labeled $1.2SO_2$) was isolated and washed well with CS_2 to remove the S_8 and any uncomplexed $Cp^*{}_2Cr_2{}^xS_5$ (both 1-2SO₂ and 2 are insoluble in CS_2). Mass spectroscopy of this solid confirmed the absence of elemental sulfur that would interfere with isotopic analysis of sulfur from subsequent reactions. Reaction of the labeled adduct with SO₂ in CHCl₃-MeOH followed by solvent removal gave a solid residue containing the Cp*₂Cr₂×S₄·SO₃ adduct unlabeled in the SO₃ position (see IR results below) plus ^{34}S -labeled S₈, thus supporting the proposed mechanism. The mass spectrum of the residue showed two sets of fragmentation patterns: one attributable to $Cp_2^*Cr_2^*S_4$ (the parent ion $Cp_{2}^{*}Cr_{2}^{*}S_{4}^{*32}SO_{3}$ was again not seen) and one for isotopicallyscrambled S_8 . These data thus refute formation of the SO₃ group by transfer of three oxygens to the terminal sulfur of the S_2 ligand, which would produce ³⁴SO₃ and unlabeled S₈ originating solely from oxygen-stripped SO₂.15

$$Cr_2 - \mu - S - {}^{34}S + 1.5SO_2 - / \rightarrow Cr_2 - \mu - S - {}^{34}SO_3 + 1.5S$$
 (5)

The identification of the SO₃ adduct as $Cp*_2Cr_2*S_4*^{32}SO_3$ and not Cp*₂Cr₂×S₄·34SO₃ utilized infrared spectroscopy, which gave v_{SO} bands identical to those of an authentic sample of unlabeled SO₃ adduct. Judging by calculations¹⁶ and the fact that ${}^{32}SO_2$ gives ν_{SO} bands at 1151 and 1361 cm⁻¹ versus 1146 and 1344 cm⁻¹ for ³⁴SO₂,⁸ resolvable shifts in the SO₃ vibrational modes would have been expected in $Cp_2Cr_2S_4$.³⁴SO₃.

Reactivity of 2 with Bases and H₂ Compared to that of the Mo Analogue. The SO₃ group in 2 is not as easily removed by weak

Calculated from the standard ΔG 's of formation for $3SO_2(g) \rightarrow 2SO_3$ (12)

⁽g) + S (g). Tang, S.-Y.; Brown, C. W. Inorg. Chem. 1975, 14, 2856 and references (13) therein.

⁽¹⁵⁾ It is unlikely that any significant scrambling between product sulfur and Cp*2Cr2*S5.SO2 reactant would occur in the short time frame of the reaction (<10 min).

⁽¹⁶⁾ For Cp*2Cr2S4. 34SO3, the expected SO frequencies based on calculation would be approximately 1216, 1192, 1002, and 604 cm⁻¹ (shifted down from 1228, 1204, 1012, and 610 cm⁻¹).

Lewis bases [B] as that in the Mo analogue (eq 6). Thus, while

$$Cp_{2}^{*}M_{2}(\mu-S_{2})(\mu-S)(\mu-SSO_{3}) \xrightarrow{[B], 25-75 \circ C} Cp_{2}^{*}M_{2}(\mu-S_{2})(\mu-S)_{2} + [B]SO_{3} (6)$$

complete conversion was observed for Cp*2Mo2S4.SO3 in 1:4 CDCl₃-Et₃N at 25 °C in 18 h,² little reaction took place for the Cranalogue under similar conditions, even after 5 days. Whereas 85% SO₃ removal was observed for $Cp_2Mo_2S_4$ ·SO₃ in MeOH at 75 °C for 1.5 h, no conversion took place for the Cr analogue. This great reactivity difference between Cr and Mo congeners was expected to be reflected in a significant disparity in the S-SO₃ or even S-O bond lengths. Surprisingly, the structure of 2 showed that these bond lengths are almost identical for Cr and Mo. Why then is there such a large reactivity difference? Since the only variance between these two species is the nature of the metal, and this does not induce any structural differences on the S-SO3 and S-O bonds, indirect influences might be a factor. A reviewer suggested that internal electron-transfer reactions (formation of S-S bonds between μ -S ligands and concomitant metal reduction) are very facile for molybdenum polysulfides and could assist SO₃ dissociation. However, it is important to note that the ³⁴S interchange between sulfide and disulfide ligands in $Cp_2Cr_2S_5$ implies that internal redox processes also occur for chromium sulfides. Steric factors might be a consideration, since the Cr complex has a more crowded coordination sphere (M-M and M-S distances are ca. 0.1 Å shorter for the Cr complex than the Mo analogue).

Reaction of 2 with hydrogen was very sluggish, also unlike that for the Mo analogue (eq 3). In an NMR tube experiment, a solution of 2 in PhCl containing a small amount of Et₃N promoter showed no reaction after several days under an H₂ atmosphere. Only under vigorous conditions (160 °C, 2 h) was it converted to 1, which probably results from reaction of $Cp_{2}^{*}Cr_{2}S_{4}$, the expected product, with sulfur (a primary or secondary product of hydrogenation of 2).

In regard to H₂ activation by sulfide complexes, the dinuclear Mo systems are unique in their ability to split H₂ to give SH ligands such as those in $[Cp^*Mo(\mu-S)(\mu-SH)]_2$.¹⁷ It is probable that in eq 3 SH groups actually reduce the SO₃ in $Cp^*_2Mo_2S_4$ ·SO₃ because $Cp^*_2Mo_2(\mu-S)_2(\mu-SH)_2$ was found² to quantitatively reduce the latter to $Cp^*_2Mo_2S_4$ (a rare example of reaction between two metal complexes to form *one* complex):

$$Cp*_{2}Mo_{2}S_{4}SO_{3} + Cp*_{2}Mo_{2}(\mu S)_{2}(\mu SH)_{2} \rightarrow 2Cp*_{2}Mo_{2}S_{4} + H_{2}O + SO_{2}$$
(7)

 $Cp^*_2Mo_2S_4$ rapidly reacts with H_2 to regenerate the SH complex, so only a trace amount of it or another species capable of producing SH ligand, perhaps the thiosulfate itself, may be all that is needed to catalyze SO₃ reduction. The very slow reaction of Cp^*_2 - Cr_2S_4 ·SO₃ with H_2 as well as the ineffectiveness of the chromium sulfides in catalyzing SO₂-H₂ reaction (see below) can possibly be correlated with their inability to split H₂ to Cr-SH species.

Catalytic Activity of 1 toward SO_2-H_2 Reaction Compared to the Mo System. As shown in eq 1 and Figure 1, $Cp^*_2Mo_2S_4$ catalyzed hydrogenation of SO_2 in 1:1 chlorobenzene-butanol at 75 °C at a rate of 350 turnovers/h.^{2.4} Using exactly the same conditions (closed 250-mL glass reactor containing ~7 mmol of SO_2 , ~3 atm of H_2 , and Bu_3N promoter), 1 was tried as a catalyst. As observed by characteristic color changes, the catalyst solution (23 mg of 1/25 mL) immediately transformed to the red-brown SO_2 adduct on exposure to the SO_2-H_2 mixture. About 15 min later at 75 °C, it became bright green, indicative of the thiosulfate 2. The hydrogenation reaction was monitored by a pressure gauge, but no noticeable pressure drop occurred after 1 h (complete reduction of SO₂ occurred within this time for the Mo system). After 16 h only partial reduction took place, equivalent to a rate of 1-2 turnover/h, consistent with the above-discussed slow H_2 reduction of 2, a key step in the proposed catalytic cycle (Figure 1). Raising the temperature of the reaction system to 160 °C led to catalyst deactivation.

Summary and Conclusions

The shift from molybdenum to chromium sulfide complexes has proven to be very fruitful, providing new evidence for how oxygen transfer takes place in the μ -S·SO₂ + 0.5SO₂ $\rightarrow \mu$ -SSO₃ + 0.5S reaction. In addition, it was established by ³⁴S labeling that complete sulfide ligand interchange occurs in $Cp_2Cr_2S_5$, 1, probably via internal redox reactions similar to those well-known for molybdenum polysulfides. The labile, terminally-bound sulfur of the η^1 -S₂ ligand in 1 is the active site in the SO₂ disproportionation process (eq 4) and is eventually eliminated, making this system distinct from $Cp_2^*Mo_2S_4$. As a result, further insight into mechanistic questions was gained, amplified by the finding of SO₂ aggregation in $Cp^*_2Cr_2(\mu-S)(\mu-S_2)(\mu-SS\cdotSO_2)\cdot SO_2$, $1-2SO_2$. It appears that association of SO_2 molecules by weak Lewis acid-base binding is the first step in the SO₂ disproportionation. The sulfur in SO_2 is a relatively strong electron acceptor while its oxygens are weak electron donors. One SO₂ molecule attaches itself to a sulfide ligand of 1 by accepting electrons, which then makes its oxygens more electron-rich (nucleophilic) and invites a second and perhaps a third SO₂ molecule (as in $1.2SO_2$) to bind to them via the electrophilic sulfur atom (Figure 6). Cleavage of an S–O bond on the first SO_2 molecule and transfer of an oxygen to the second then gives SO_3 plus S_2O (if one includes here the original terminal S of the S_5 core), a process that could be promoted by interaction of the nascent SO_3 and/or S_2O with Lewis bases [B], e.g., R_3N . In the absence of added base, adventitious water or even another SO₂ molecule (oxygen lone pair) could less effectively fulfill the role. The mechanism in Figure 6 would then be consistent with several crucial observations, foremost being ultimate extrusion of the terminal sulfur of the CrS₅ core as S₈, confirmed by ³⁴S labeling. The expulsion of the maximum amount of sulfur from the CrS core, i.e., the lack of formation of $Cp_2Cr_2(\mu-S)(\mu-S_2)(\mu-SS-SO_3)$, indicates that, as found in several other systems, the μ -thiosulfate ligand is a thermodynamically favored species.² This mechanism could also be applicable to SO_2 disproportionation on the $Cp_{2}M_{2}S_{4}$ (M = Cr, Mo) systems, whereby the only difference would be formation of equally unstable SO instead of S_2O .

It is interesting to note that *air oxidation* of 1 (toluene, 45 °C, 18 h) has also been found to yield thiosulfates, in this case a *mixture* of 2 and Cp $^{+}_{2}$ Cr₂S₅·SO₃.⁶⁶ The following scheme summarizes thiosulfate formation from this and other reactions by Wachter's and our groups:

Reaction of $Cp^*_2Mo_2S_4$ and O_2 had earlier given $Cp^*_2Mo_2S_4$ ·SO₃ (~20% yield),^{2,18} and the SO₂ oxygen-transfer process was considered as a candidate for the mechanism of thiosulfate formation (SO₂ generated by sacrificial air oxidation of sulfide). However, both the observation of negligible SO₂ in a $Cp^*_2Mo_2S_4$ -

⁽¹⁷⁾ Rakowski DuBois, M. Chem. Rev. 1989, 89, 1.

 ^{(18) (}a) Brunner, H.; Klement, U.; Pfauntsch, J.; Wachter, J. Angew. Chem., Int. Ed. Engl. 1987, 26, 230. (b) Brunner, H.; Kauermann, H.; Pfauntsch, J.; Wachter, J. J. Organomet. Chem. 1987, 331, 45.

It is conceivable that other types of reactions of SO_2 , with or without metal complexes present, may actually occur via a disproportionation route. Indeed FeS has been found to react with SO₂ in aqueous media to produce thiosulfate ion and $Fe^{2+,20}$ The initial step in the reaction was believed to be adsorption of SO₂ on FeS, followed by dissolution of the FeS with the formation of Fe^{2+} ion and thiosulfurous acid intermediate, $H_2S_2O_2$. The latter then was proposed to react with HSO3- to give thiosulfuric acid, $H_2S_2O_3$, and HSO_2^- . All of these species are very unstable though, and an oxygen-transfer route could be an alternate direct pathway to FeSSO₃ without involvement of protons. The role of Lewis bases in promoting these reactions could be fulfilled by H₂O here. In this regard, the industrially important Claus-type reaction (eq 8), for which the mechanism is not well understood, does not require a metal catalyst but does require the presence of water or other basic media (alcohols, alumina).²¹ Equation 8 does not occur or is slow in hydrocarbons or halogenated

$$2H_2S + SO_2 \rightarrow \frac{3}{8}S_8 + 2H_2O$$
 (8)

solvents,^{21a,b} and we have noted a similar profile for the group 6 sulfide–SO₂ reactions. One could envision formation of an H₂S·SO₂ adduct which undergoes oxygen transfer to give S₈ and H₂S·SO₃. The latter is essentially thiosulfuric acid, which is known²² to decompose in the presence of water to species such as sulfur, H₂O, and SO₂ which are products/reactants of the Claus reaction.

- (19) As originally proposed by Wachter (ref 18), SO₃ (or an SO₃ source analogous to py·SO₃) is probably formed in some unidentified fashion and randomly binds to either S₄ or S₅ species (the former possibly generated from the latter by sacrificial loss of its labile sulfur to air oxidation).
- (20) Thom, G. C.; Waters, P. F.; Hadermann, A. F. Inorg. Chem. 1978, 17, 1693.
- (21) (a) Matthews, E. J. Chem. Soc. 1926, 2270. (b) Albertson, N. F.; McReynolds, J. P. J. Am. Chem. Soc. 1943, 65, 1690. (c) Gregor, I. K.; Martin, R. L. Aust. J. Chem. 1959, 12, 424. (d) Datta, A.; Cavell, R. G. J. Phys. Chem. 1985, 89, 454.
 (22) (a) Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 5th
- (22) (a) Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 5th ed.; Wiley: New York, 1988; p 522. (b) Schmidt, M. In Sulfur in Organic and Inorganic Chemistry; Senning, A., Ed.; Marcel Dekker, Inc.: New York, 1972; Vol. 2, p 92.

Although the rate of SO_2 disproportionation on the Cr sulfides is much faster than that of the Mo analogue, the resulting complex 2, $Cp^*_2Cr_2S(S_2)(SSO_3)$, is less reactive toward Lewis bases and H₂ than the Mo congener. Apparently the low reactivity with H₂ and the ineffectiveness of the chromium sulfides in catalyzing SO₂ hydrogenation can be correlated with the inability of chromium sulfides to readily form Cr-SH species.

The SO₂ disproportionation appears to be entirely a Lewis acid-base process, with the metal perhaps serving only as electron ballast. Recently a possibly related oxygen atom disproportionation process was reported²³ for thiosulfinato to thiosulfonato conversion:

It is thus becoming increasingly evident that SO_2 and possibly other oxygen-containing small molecules (e.g., $NO_x)^{24}$ with amphoteric acid-base properties may be more susceptible to cleavage reactions than previously thought. Further studies of the mechanisms of such reactions may lead to new strategies for chemical synthesis and, more importantly, abatement of environmentally damaging oxides.

Acknowledgment. We are deeply grateful to Prof. Joachim Wachter of the University of Regensburg for providing samples of chromium and tungsten sulfide complexes for our studies of SO_2 reactivity complementary to his work. We also are indebted to David Barnhart for crystallographic studies. This research was funded by the U.S. Department of Energy, Division of Chemical Sciences, Office of Basic Energy Sciences.

Supplementary Material Available: Tables of structure determination data, fractional coordinates, and general displacement parameter expressions (U's) (9 pages). Ordering information is given on any current masthead page.

- (23) Shaver, A.; Plouffe, P.-Y. J. Am. Chem. Soc. 1991, 113, 7780.
- (24) Oxygen transfer from NO₂ to a μ-S ligand to form μ-SO₂ has recently been reported: Qi, J.-S.; Schrier, P. W.; Fanwick, P. E.; Walton, R. A. J. Chem. Soc., Chem. Commun. 1991, 1737.